602 research outputs found

    Can Hong Kong do without a Cultural Bureau?

    Get PDF
    I commenced this study with a single question: Can Hong Kong do without a Cultural Bureau? As the respondents fed back over a four-month period, thematic various strands converged. It seems that, by and large, there is a consensus amongst the cultural sector that a Cultural Bureau would be a good idea, though this is highly contingent on a clear and transparent mandate, and a Chief who the cultural sector will support. A Cultural Bureau might solve various issues, such as; fragmentation, centralization, issues concerning perceived value of culture, metrics for measuring success – and other inhibiting factors. Perhaps a more realistic, outcome, however, was the shared view that a unified vision is needed ahead of a Cultural Bureau. The term Cultural Bureau is so politically charged at this moment in Hong Kong’s history, that its chances of survival are slim. Rather late in the study, I chanced upon the Culture and Heritage Commission’s Policy Recommendation Report from 2003 – here was the vision, and the blueprint – though it was incredulously shelved! The discussion has turned back to that report – as many respondents were either not aware of its existence or had forgotten about it. I hope my contribution here, will shine a light on that report and will go some way towards encouraging further debate around the matter.published_or_final_versionMedia, Culture and Creative CitiesMasterMaster of Social Sciences in Media, Culture and Creative Citie

    The WiggleZ Dark Energy Survey: Galaxy Evolution at 0.25 ≤ z ≤ 0.75 Using the Second Red-Sequence Cluster Survey

    Get PDF
    We study the evolution of galaxy populations around the spectroscopic WiggleZ sample of star-forming galaxies at 0.25 ≤ z ≤ 0.75 using the photometric catalog from the Second Red-Sequence Cluster Survey (RCS2). We probe the optical photometric properties of the net excess neighbor galaxies. The key concept is that the marker galaxies and their neighbors are located at the same redshift, providing a sample of galaxies representing a complete census of galaxies in the neighborhood of star-forming galaxies. The results are compared with those using the RCS WiggleZ Spare-Fibre (RCS-WSF) sample as markers, representing galaxies in cluster environments at 0.25 ≤ z ≤ 0.45. By analyzing the stacked color-color properties of the WiggleZ neighbor galaxies, we find that their optical colors are not a strong function of indicators of star-forming activities such as EW([O II]) or Galaxy Evolution Explorer (GALEX) near-UV luminosity of the markers. The galaxies around the WiggleZ markers exhibit a bimodal distribution on the color-magnitude diagram, with most of them located in the blue cloud. The optical galaxy luminosity functions (GLFs) of the blue neighbor galaxies have a faint-end slope α of ~ –1.3, similar to that for galaxies in cluster environments drawn from the RCS-WSF sample. The faint-end slope of the GLF for the red neighbors, however, is ~ –0.4, significantly shallower than the ~ –0.7 found for those in cluster environments. This suggests that the buildup of the faint end of the red sequence in cluster environments is in a significantly more advanced stage than that in the star-forming and lower galaxy density WiggleZ neighborhoods. We find that the red galaxy fraction (f_red) around the star-forming WiggleZ galaxies has similar values from z ~ 0.3 to z ~ 0.6 with f_red ~ 0.28, but drops to f_red ~ 0.20 at z gsim 0.7. This change of f_red with redshift suggests that there is either a higher rate of star-forming galaxies entering the luminosity-limited sample at z ≳ 0.7, or a decrease in the quenching rate of star formation at that redshift. Comparing to that in a dense cluster environment, the f_red of the WiggleZ neighbors is both considerably smaller and has a more moderate change with redshift, pointing to the stronger and more prevalent environmental influences on galaxy evolution in high-density regions

    WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

    Get PDF
    The absolute neutrino mass scale is currently unknown, but can be constrained by cosmology. The WiggleZ high redshift, star-forming, and blue galaxy sample offers a complementary data set to previous surveys for performing these measurements, with potentially different systematics from nonlinear structure formation, redshift-space distortions, and galaxy bias. We obtain a limit of ∑m_ν<0.60  eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble parameter and the baryon acoustic oscillation scale gives ∑m_ν<0.29  eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys

    Vom Sinn katholischer Akademien

    Get PDF

    The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies

    Get PDF
    We report evidence of ordered orbital motion in luminous star-forming galaxies at z~ 1.3. We present integral field spectroscopy (IFS) observations, performed with the OH Suppressing InfraRed Imaging Spectrograph (OSIRIS) system, assisted by laser guide star adaptive optics on the Keck telescope, of 13 star-forming galaxies selected from the WiggleZ Dark Energy Survey. Selected via ultraviolet and [O ii] emission, the large volume of the WiggleZ survey allows the selection of sources which have comparable intrinsic luminosity and stellar mass to IFS samples at z > 2. Multiple 1–2 kpc size subcomponents of emission, or ‘clumps’, are detected within the Hα spatial emission which extends over 6–10 kpc in four galaxies, resolved compact emission (r 100 km s^(−1)) in the most compact sources. This unique data set reveals that the most luminous star-forming galaxies at z > 1 are gaseous unstable discs indicating that a different mode of star formation could be feeding gas to galaxies at z > 1, and lending support to theories of cold dense gas flows from the intergalactic medium

    The WiggleZ Dark Energy Survey: final data release and the metallicity of UV-luminous galaxies

    Get PDF
    The WiggleZ Dark Energy Survey measured the redshifts of over 200 000 ultraviolet (UV)-selected (NUV < 22.8 mag) galaxies on the Anglo-Australian Telescope. The survey detected the baryon acoustic oscillation signal in the large-scale distribution of galaxies over the redshift range 0.2 < z < 1.0, confirming the acceleration of the expansion of the Universe and measuring the rate of structure growth within it. Here, we present the final data release of the survey: a catalogue of 225 415 galaxies and individual files of the galaxy spectra. We analyse the emission-line properties of these UV-luminous Lyman-break galaxies by stacking the spectra in bins of luminosity, redshift, and stellar mass. The most luminous (−25mag < M_(FUV) < −22mag) galaxies have very broad Hβ emission from active nuclei, as well as a broad second component to the [O III] (495.9 nm, 500.7 nm) doublet lines that is blueshifted by 100 km s^(−1) , indicating the presence of gas outflows in these galaxies. The composite spectra allow us to detect and measure the temperature-sensitive [O III] (436.3 nm) line and obtain metallicities using the direct method. The metallicities of intermediate stellar mass (8.8 < log (M*/M⊙) < 10) WiggleZ galaxies are consistent with normal emission-line galaxies at the same masses. In contrast, the metallicities of high stellar mass (10 < log (M*/M⊙) < 12) WiggleZ galaxies are significantly lower than for normal emission-line galaxies at the same masses. This is not an effect of evolution as the metallicities do not vary with redshift; it is most likely a property specific to the extremely UV-luminous WiggleZ galaxies
    • …
    corecore